Caltech Scientists Find Evidence For Massive Ice Age When Earth Was 2.4 billion Years Old
PASADENA— Those who think the winter of '97 was rough should be relieved that they weren't around 2.2 billion years ago. Scientists have discovered evidence for an ice age at the time that was severe enough to partially freeze over the equator. In today's new issue of Nature, California Institute of Technology geologists Dave Evans and Joseph Kirschvink report evidence that glaciers came within a few degrees of the equator's latitude when the planet was about 2.4 billion years old. They base their conclusion on glacial deposits discovered in present-day South Africa, plus magnetic evidence showing where South Africa's crustal plate was located at that time.
Based on that evidence, the Caltech researchers think they have documented the extremely rare "Snowball Earth" phenomenon, in which virtually the entire planet may have been covered in ice and snow. According to Kirschvink, who originally proposed the Snowball Earth theory, there have probably been only two episodes in which glaciation of the planet reached such an extent — one less than a billion years ago during the Neoproterozoic Era, and the one that has now been discovered from the Paleoproterozoic Era 2.2 billion years ago.
"The young Earth didn't catch a cold very often," says Evans, a graduate student in Kirschvink's lab. "But when it did, it seems to have been pretty severe."
The researchers collected their data by drilling rock specimens in South Africa and carefully recording the magnetic directions of the samples. From this information, the researchers then computed the direction and distance to the ancient north and south poles.
The conclusion was that the place in which they were drilling was 11 degrees (plus or minus five degrees) from the equator when Earth was 2.4 billion years old. Plate tectonic motions since that time have caused South Africa to drift all over the planet, to its current position at about 30 degrees south latitude. Additional tests showed that the samples were from glacial deposits, and further, were characteristic of a widespread region.
Kirschvink and Evans say that the preliminary implications are that Earth can somehow manage to pull itself out of a period of severe glaciation. Because ice and snow tend to reflect sunlight much better than land and water, Earth would normally be expect to have a hard time reheating itself in order to leave an ice age. Thus, one would expect a Snowball Earth to remain forever.
Yet, the planet obviously recovered both times from the severe glaciation. "We think it is likely that the intricacies of global climate feedback are not yet completely understood, especially concerning major departures from today's climate," says Evans. "If the Snowball Earth model is correct, then our planet has a remarkable resilience to abrupt shifts in climate.
"Somehow, the planet recovered from these ice ages, probably as a result of increased carbon dioxide — the main greenhouse gas."
Evans says that an asteroid or comet impact could have caused carbon dioxide to pour into the atmosphere, allowing Earth to trap solar energy and reheat itself. But evidence of an impact during this age, such as a remote crater, is lacking.
Large volcanic outpourings could also have released a lot of carbon dioxide, as well as other factors, such as sedimentary processes and biological factors.
At any rate, the evidence for the robustness of the planet and the life that inhabits it is encouraging, the researchers say. Not only did Earth pull itself out of both periods of severe glaciation, but many of the single-celled organisms that existed at the time managed to persevere.